P P SAVANI UNIVERSITY

Third Semester of B. Tech. Examination December 2022

SESH2011 Differential Equations

23.11.2022, Wednesday Time: 10:00 a.m. To 12:30 p.m.

Maximum Marks: 60

Instructions:

The question paper comprises of two sections.
 Section I and II must be attempted in separate answer sheets.

Make suitable assumptions and draw neat figures wherever required.
 Use of scientific calculator is allowed.

	SECTION - I				
Q-1	Choose correct answer for any two:	[05]	CO	BTL	
(i)	Degree of the differential equation $y = z \frac{dy}{dx} + \frac{x}{\frac{dy}{dx}}$ is		1	1/2	
	a. 1 b. 2 c. 3 d. 4		1		
(ii)	The necessary condition for the differential equation to be an exact differe	ntial	2	1	
	equation is				
	$\mathbf{a}. \frac{\partial N}{\partial y} \neq \frac{\partial M}{\partial x}$ $\mathbf{b}. \frac{\partial N}{\partial x} = \frac{\partial M}{\partial x}$ $\mathbf{c}. \frac{\partial M}{\partial x} = \frac{\partial N}{\partial y}$ $\mathbf{d}. \frac{\partial M}{\partial y} = \frac{\partial N}{\partial x}$				
(iii)	The root of the PDE $(2D^2 + 5DD' + 2D'^2)z = 0$ is		2	2	
	a. $\left(2, -\frac{1}{2}\right)$ b. $\left(-2, \frac{1}{2}\right)$ c. $\left(2, \frac{1}{2}\right)$ d. $\left(-2, -\frac{1}{2}\right)$				
Q-2(a)	Solve $x^2(y-z)p + y^2(z-x)q = z^2(x-y)$.	[05]	2	5	
Q-2(b)	Solve $(x^2 + y^2 + 1)dx - 2xydy = 0$.	[05]	1	4/5	
	OR				
Q-2(a)	Solve $\frac{y^2z}{r}p + xzq = y^2$.	[05]	2	5	
Q-2(b)	Solve $2xyy' = y^2 - x^2$.	[05]	1	4/5	
Q-3	Solve $\frac{\partial u}{\partial x} + \frac{\partial u}{\partial y} = 2(x + y)u$.	[05]	2	5	
	OR OR	[]			
0-3	Solve $z = px + qy - 2\sqrt{pq}$.	[05]	2	3/5	
0-4	Attempt any one:	[10]	-	3/3	
(i)	Find the orthogonal trajectory of $r = a(1 - \cos \theta)$.	[10]	1	4	
(ii)	Solve $\frac{d^2y}{dx^2} + \frac{dy}{dx} - 12y = e^{6x}$.		1	5	
()			1	3	
Q-1	SECTION - II Choose correct answer for any two:	[OF]			
(i)	Which of the following is not periodic functions?	[05]	5	1/2	
(-)	a. x b. e^x c. $\ln x$ d. All		5	1/2	
(ii)	Which of the following is odd function.		5	1/2	
	a. $\cos x$ b. $\tan x$ c. x^2 d. None		,	1/2	
(iii)	$L\{\cosh a\ t\} = \underline{\hspace{1cm}}.$		4	1	
	$L\{\cosh a \ t\} = \underline{\qquad}.$ $\mathbf{a}. \frac{s}{s^2 + a^2} \qquad \mathbf{b}. \frac{a}{s^2 - a^2} \qquad \mathbf{c}. \frac{a}{s^2 + a^2} \qquad \mathbf{d}. \frac{s}{s^2 - a^2}$				
Q - 2 (a)	Find the Fourier series of $f(x) = \begin{cases} \pi x & 0 \le x \le 1 \\ \pi(2-x) & 1 \le x \le 2 \end{cases}$	[05]	5	4	
Q-2(b)	Find the Laplace transform of $\frac{1-e^{-t}}{t}$.	[05]	4	5	
	OR	[00]	•		
Q-2(a)	Find the Fourier series of $f(x) = e^{-x}$ in the interval $0 < x < 2\pi$.	[05]	5	5	
,	in the interval of X \ Zh.	[03]	3	3	

Find the Laplace transform of $\int_0^t e^{-t} dt$. [05] 5 Find the Fourier cosine and Fourier sine transforms of $f(x) = \begin{cases} k & 0 < x < a \\ 0 & x > a \end{cases}$ OR Q-3 4/5 Find the half-range cosine series $f(x) = \sin x$ in the interval $(0, \pi)$. Q-3 [05] 5 Q-4 Attempt any one: [10] Using Fourier integral representation, show that (i) $\int_0^\infty \frac{\cos \omega \, x + \omega \sin \omega \, x}{1 + \omega^2} \, d\omega = \begin{cases} \frac{0}{\pi} & x < 0 \\ \frac{\pi}{2} & x = 0 \\ \pi e^{-x} & x > 0 \end{cases}$ of $f(t) = \begin{cases} 4; & 0 \le t < 1 \\ 3; & t \ge 1 \end{cases}$ (ii) Find the Laplace transform of 5

CO : Course Outcome Number

BTL : Blooms Taxonomy Level

Level of Bloom's Revised Taxonomy in Assessment

1: Remember	2: Understand	3: Apply
4: Analyze	5: Evaluate	6: Create